Mark Scheme 4766 January 2007

GENERAL INSTRUCTIONS

Marks in the mark scheme are explicitly designated as $\mathbf{M}, \mathbf{A}, \mathbf{B}, \mathbf{E}$ or \mathbf{G}.
M marks ("method") are for an attempt to use a correct method (not merely for stating the method).
A marks ("accuracy") are for accurate answers and can only be earned if corresponding M mark(s) have been earned. Candidates are expected to give answers to a sensible level of accuracy in the context of the problem in hand. The level of accuracy quoted in the mark scheme will sometimes deliberately be greater than is required, when this facilitates marking.

B marks are independent of all others. They are usually awarded for a single correct answer.
E marks ("explanation") are for explanation and/or interpretation. These will frequently be sub divisible depending on the thoroughness of the candidate's answer.

G marks ("graph") are for completing a graph or diagram correctly.

- Insert part marks in right-hand margin in line with the mark scheme. For fully correct parts tick the answer. For partially complete parts indicate clearly in the body of the script where the marks have been gained or lost, in line with the mark scheme.
- Please indicate incorrect working by ringing or underlining as appropriate.
- Insert total in right-hand margin, ringed, at end of question, in line with the mark scheme.
- Numerical answers which are not exact should be given to at least the accuracy shown. Approximate answers to a greater accuracy may be condoned.
- Probabilities should be given as fractions, decimals or percentages.
- FOLLOW-THROUGH MARKING SHOULD NORMALLY BE USED WHEREVER POSSIBLE. There will, however, be an occasional designation of 'c.a.o.' for "correct answer only".
- Full credit MUST be given when correct alternative methods of solution are used. If errors occur in such methods, the marks awarded should correspond as nearly as possible to equivalent work using the method in the mark scheme.
- The following notation should be used where applicable:

FT	Follow-through marking
BOD	Benefit of doubt
ISW	Ignore subsequent working

$\begin{aligned} & \mathbf{Q} \\ & \mathbf{1} \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \text { Mean }=127.6 / 13=9.8 \\ & \text { Median }=8.6 \\ & \text { Midrange }=14.5 \\ & \hline \end{aligned}$	M1 for 127.6/13 soi A1 CAO B1 CAO B1 CAO	4
(ii)	Mean slightly inflated due to the outlier Median good since it is not affected by the outlier Midrange poor as it is highly inflated due to the outlier	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3
		TOTAL	7
$\begin{aligned} & \hline \mathbf{Q} \\ & 2 \\ & \text { (i) } \end{aligned}$		G1 labelled linear scales on both axes G1 heights	2
(ii)	$\begin{aligned} & \text { Mean }=\frac{99}{50}=1.98 \\ & S_{x x}=315-\frac{99^{2}}{50} \quad(=118.98) \\ & r m s d=\sqrt{\frac{118.98}{50}}=1.54 \end{aligned}$ NB full marks for correct results from recommended method which is use of calculator functions	B1 for mean M1 for attempt at $S_{x x}$ A1 CAO	3
(iii)	New mean $=30-1.98=28.02$ New rmsd $=1.54$ (unchanged)	B1 FT their mean B1 FT their rmsd	2
		TOTAL	7
$\begin{gathered} \hline \mathbf{Q} \\ \mathbf{3} \\ \text { (i) } \end{gathered}$	 time freq width f dens $0-$ 34 5 6.8 $5-$ 153 5 30.6 $10-$ 188 10 18.8 $20-$ 73 10 7.3 $30-$ 27 10 2.7 $40-$ 5 20 0.25	M1 for fds A1 CAO Accept any suitable unit for fd such as eg freq per 5 mins. G1 linear scales on both axes and label G1 width of bars G1 height of bars	5
(ii)	Positive skewness	B1 CAO (indep)	1
		TOTAL	6

$\begin{aligned} & \mathbf{Q} \\ & \mathbf{6} \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \text { Median }=3370 \\ & Q_{1}=3050 \quad Q_{3}=3700 \\ & \text { Inter-quartile range }=3700-3050=650 \end{aligned}$	B1 B1 for Q_{3} or Q_{1} B1 for IQR	3
(ii)	Lower limit 3050-1.5 $\times 650=2075$ Upper limit $3700+1.5 \times 650=4675$ Approx 40 babies below 2075 and 5 above 4675 so total 45	B1 B1 M1 (for either) A1	4
(iii)	Decision based on convincing argument: eg 'no, because there is nothing to suggest that they are not genuine data items and these data may influence health care provision'	E2 for convincing argument	2
(iv)	All babies below 2600 grams in weight	B2 CAO	2
(v)	(A) $\begin{aligned} & X \sim \mathrm{~B}(17,0.12) \\ & \mathrm{P}(X=2)=\binom{17}{2} \times 0.12^{2} \times 0.88^{15}=0.2878 \end{aligned}$ $\text { (B) } \quad \begin{aligned} & \mathrm{P}(X>2) \\ & =1-\left(0.2878+\binom{17}{1} \times 0.12 \times 0.88^{16}+0.88^{17}\right) \\ & =1-(0.2878+0.2638+0.1138)=0.335 \end{aligned}$	M1 $\binom{17}{2} \times p^{2} \times q^{15}$ M1 indep $0.12^{2} \times 0.88^{15}$ A1 CAO M1 for $\mathrm{P}(X=1)+\mathrm{P}(X=0)$ M1 for $1-\mathrm{P}(X \leq 2)$ A1 CAO	3
(vi)	Expected number of occasions is 33.5	B1 FT	1
		TOTAL	18

$\begin{aligned} & Q \\ & \mathbf{Q} \\ & \text { (i) } \end{aligned}$	(A) $\quad \mathrm{P}$ (both) $=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$ (B) $\quad \mathrm{P}($ one $)=2 \times \frac{2}{3} \times \frac{1}{3}=\frac{4}{9}$ (C) $\quad \mathrm{P}$ (neither) $=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$	B1 CAO B1 CAO B1 CAO	3
(ii)	Independence necessary because otherwise, the probability of one seed germinating would change according to whether or not the other one germinates. May not be valid as the two seeds would have similar growing conditions eg temperature, moisture, etc. NB Allow valid alternatives	E1 E1	2
(iii)	$\begin{aligned} & \text { Expected number }=2 \times \frac{2}{3}=\frac{4}{3}(=1.33) \\ & E\left(X^{2}\right)=0 \times \frac{1}{9}+1 \times \frac{4}{9}+4 \times \frac{4}{9}=\frac{20}{9} \\ & \operatorname{Var}(X)=\frac{20}{9}-\left(\frac{4}{3}\right)^{2}=\frac{4}{9}=0.444 \end{aligned}$ NB use of npq scores M1 for product, A1CAO	B1 FT M1 for $E\left(X^{2}\right)$ A1 CAO	3
(iv)	Expect $200 \times \frac{8}{9}=177.8$ plants So expect $0.85 \times 177.8=151$ onions	M1 for $200 \times \frac{8}{9}$ M1 dep for $\times 0.85$ A1 CAO	3
(v)	Let $X \sim \mathrm{~B}(18, p)$ Let $p=$ probability of germination (for population) $\mathrm{H}_{0}: p=0.90$ $\mathrm{H}_{1}: p<0.90$ $\mathrm{P}(X \leq 14)=0.0982>5 \%$ So not enough evidence to reject H_{0} Conclude that there is not enough evidence to indicate that the germination rate is below 90%. Note: use of critical region method scores M1 for region $\{0,1,2, \ldots, 13\}$ M1 for 14 does not lie in critical region then A1 E1 as per scheme	B1 for definition of p B1 for H_{0} B1 for H_{1} M1 for probability M1 dep for comparison A1 E1 for conclusion in context	7
		TOTAL	18

